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Abstract

Link analysis typically focuses on a single type of connection, e.g., two journal papers are
linked because they are written by the same author. However, often we want to analyze data that
has multiple linkages between objects, e.g., two papers may have the same keywords and one may
cite the other. The goal of this paper is to show that multilinear algebra provides a tool for multi-
link analysis. We analyze five years of publication data from journals published by the Society
for Industrial and Applied Mathematics. We explore how papers can be grouped in the context
of multiple link types using a tensor to represent all the links between them. A PARAFAC
decomposition on the resulting tensor yields information similar to the SVD decomposition
of a standard adjacency matrix. We show how the PARAFAC decomposition can be used to
understand the structure of the document space and define paper-paper similarities based on
multiple linkages. Examples are presented where the decomposed tensor data is used to find
papers similar to a body of work (e.g., related by topic or similar to a particular author’s papers),
find related authors using linkages other than explicit co-authorship or citations, distinguish
between papers written by different authors with the same name, and predict the journal in
which a paper was published.

3

http://www.cs.sandia.gov/optimization/dunlavy/index.htm
http://csmr.ca.sandia.gov/~tgkolda
http://roswell.ca.sandia.gov/kegelmeyer.html


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Analysis of publication data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Higher-order analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Other related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The PARAFAC decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 PARAFAC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 PARAFAC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1 The Data as a Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Quantitative measurements on the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1 Community Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Latent Document Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Analyzing a Body of Work via Centroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 Author Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5 Journal Prediction via Ensembles of Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Conclusions & Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figures

1 Tensor slices capture different link types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 The PARAFAC decomposition separates the tensor into rank-1 factors. . . . . . . . . . . . 8

Tables

1 Data statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Per slice data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Link scores for two of the PARAFAC factors for R = 30. . . . . . . . . . . . . . . . . . . . . . . . 11
4 Highest scoring hubs & authorities for first PARAFAC factor for R = 30. . . . . . . . . . 12
5 Highest hubs & authorities for the tenth PARAFAC factor for R = 30. . . . . . . . . . . . 13
6 Article similarities to Link Analysis: Hubs and Authorities on the World Wide Web

using a rank R = 10 PARAFAC decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7 Article similarities to Link Analysis: Hubs and Authorities on the World Wide Web

using a rank R = 30 PARAFAC decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8 Articles similar to the centroid of articles containing the term GMRES using the hub

and authority matrices to compute similarity scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9 Papers similar to those by V. Kumar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10 Authors with most papers before and after disambiguation (threshhold = 0.499) . . . . 17
11 Disambiguation of author Z. Wu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
12 Combined author 1 in disambiguation of Z. Wu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
13 Separated author 1 for disambiguation of Z. Wu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
14 Journal prediction confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4



Multilinear algebra for analyzing data

with multiple linkages

1 Introduction

Data with multiple link types is challenging to analyze, yet such data abounds. For example, Adamic
and Adar [2] analyze a social network where nodes are connected by organizational structure, i.e.,
each employee is connected to his or her boss, and also by direct email communication. Social
networks clearly have many types of links — familial, communication (phone, email, etc.), organi-
zational, geographical, etc. Some links are explicit, e.g., siblings, while others are implicit, e.g., two
people may be implicitly linked if they work at the same company.

Our focus is on journal publication data—specifically considering the many ways that two papers
may be linked. We analyze five years of journal publication data from eleven journals and a set of
conference proceedings published by the Society for Industrial and Applied Mathematics (SIAM).
Explicit, directed links exist whenever one paper cites another. Implicit links are derived based
on title, abstract, and keyword similarities as well as author similarity. Historically, bibliometric
researchers have focused solely on citation analysis or text analysis, but not both simultaneously.

Our overarching goal is to analyze data with multiple explicit and implicit links, and to derive
feature vectors. Though we focus on bibliometric analysis, the techniques that we discuss are
potentially applicable to a wide range of tasks and have already been used for higher-order web link
analysis [23, 22].

Many link analysis techniques, e.g., PageRank [8] and HITS [20], are focused on a single link
type and decompose the adjacency matrix of the graph. Our method is similar, except that we
allow multiple link types and decompose the adjacency tensor of the graph. We define a three-way
array of size N ×N ×K where N is the number of nodes (e.g., documents) and K is the number of
different link types. Thus, the (i, j, k) entry is nonzero if node i is connected to node j by link type
k. In the example of Adamic and Adar [2] discussed above, we have two links types where k = 1
reflects the organization connection and k = 2 reflects the email communication connection. For our
data, we consider five different link types based on abstract, title, and keyword similarity as well as
common authors and citations; see Figure 1.

Frontal Slices X::k

X::5 = citation�

X::4 = author similarity�

X::3 = keyword similarity�

X::2 = title similarity�

X::1 = abstract similarity�

Figure 1. Tensor slices capture different link types

We decompose the tensor using PARAFAC [17, 9] and use the results to understand the data in
several ways.
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• The raw factors reveal “communities” within the article collection and how they are connected,
e.g., the connection may be mostly due to title similarity in some cases and citation similarity in
other cases.

• The component matrices of the factorization provide derived feature vectors which are, in turn,
used to derive a latent similarity measure for the documents. We demonstrate that this can be used
to compute similarity scores for documents that combine the multiple linkage types.

• More generally, the most similar papers to a body of work, e.g., by a given author, are analyzed
to find the most similar papers in the larger collection.

• We also show that the feature vectors associated with individual authors can be used to
disambiguate authors. For example, is H. Simon the same as H. S. Simon?

• We apply supervised learning techniques (decision trees and ensembles) to the derived feature
vectors to predict which journals published which papers.

2 Related Work

2.1 Analysis of publication data

Researchers look at publication data to understand the impact of individual authors and who is
collaborating with whom, to understand the type of information being published and by which
venues, and to extract “hot topics” and understand trends [7]. For example, Barábasi et al. [4]
consider the social network of scientific collaborations based on publication data, particularly the
properties of the entire network and its evolution over time.

The 2003 KDD Cup challenge was to apply data mining techniques to bibliographic data [14].
McGovern et al. [25] looked at a number of questions. Of particular relevance to this paper is that, in
their community analysis, they found that clustering based only on text did not yield useful clusters.
Instead, they used spectral-based citation analysis but weighted the links on the citation graph by
the cosine similarity of the paper abstracts. This is a novel method for incorporating text similarity
information into the citation graph. Additionally, for predicting where an article will be published,
they use relational probability trees (see, e.g., [16]). Lin and Chalupsky [10] consider the idea of
finding interesting connections within a graph that represents papers, authors, organizations, etc.,
without restricting the connection to be of a certain type. The goal of their “novel node discovery”
and our methods is quite similar—to find related nodes—but the techniques are very different. They
analyze the graph directly whereas we analyze a latent representation. Hill and Provost [19] use only
citation information to predict authorship almost half the time. They note that including text-based
methods may improve accuracy.

2.2 Higher-order analysis

Tensor decompositions have a long history and have been used in applications ranging from chemo-
metrics [27] to image analysis [32]. Recently, they have been applied to data-centric problems
including analysis of click-through data, using an alternate decomposition known as Tucker [28],
and chatroom analysis comparing different tensor decompositions [1]. Tao et al. [29] do supervised
learning on a low-rank PARAFAC-like decomposition of their data. Liu et al. [24] consider a Tucker
decomposition for text classification. Kolda et al. [23, 22] used the PARAFAC decomposition to
extend the well-known HITS method to incorporate anchor text information.

6



2.3 Other related work

Relational probability trees (RPTs) [16, 15] offer another technique for analyzing graphs with dif-
ferent link and node types. These methods can be used as alternatives, particularly in prediction
tasks such as determining the journal that an article will be published in. Rattigan and Jensen [26]
have also used RPTs for finding anomalous links.

As we later consider the problem of disambiguation, we note that Bekkerman and McCallum [5]
approach this issue by considering the appearance of individuals on the web.

3 The PARAFAC decomposition

3.1 Notation

Scalars are denoted by lowercase letters, e.g., c. Vectors are denoted by boldface lowercase letters,
e.g., v. The ith entry of v is denoted by vi. Matrices are denoted by boldface capital letters, e.g.,
A. The jth column of A is denoted by aj and element (i, j) by aij . Tensors (i.e., multi-way arrays)
are denoted by boldface Euler script letters, e.g., X. Element (i, j, k) of a 3rd-order tensor X is
denoted by xijk. The symbol ◦ denotes the outer product of vectors; for example, if a ∈ RI , b ∈ RJ ,
c ∈ RK , then X = a ◦ b ◦ c if and only if xijk = aibjck for all 1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K.
The symbol ⊗ denotes the Kronecker product of vectors; for example, x = a ⊗ b means x` = aibj

with ` = j + (i − 1)(J) for all 1 ≤ i ≤ I, 1 ≤ j ≤ J . The symbol ∗ denotes the Hadamard (i.e.,
elementwise) matrix product.

The norm of a tensor is given by the square root of the sum of the squares of all its elements, i.e.,
for a tensor X of size I × J ×K, ‖X ‖2 ≡

∑I
i=1

∑J
j=1

∑K
k=1 x2

ijk. This is the higher-order analogue
of the matrix Frobenius norm.

3.2 PARAFAC Description

The PARAFAC decomposition [17, 9] is a higher-order analogue of the matrix singular value decom-
position (SVD) which decomposes a tensor into a sum of rank-1 tensors. PARAFAC should not be
confused with the Tucker decomposition [31], a different higher-order analogue of the SVD.

Recall that our data will be arranged into a tensor X of size N ×N ×K. We choose a desired
rank of the approximation, R, which loosely reflects the number of communities in the data. Often
some experimentation is required to determine the most useful value of R, as will be seen in §5. The
goal is to approximate X as

X ≈
R∑

r=1

λr hr ◦ ar ◦ cr ≡ λ JH,A,CK.

Here, λ is a vector of length R that represents the weight of each community; H and A are matrices
of size N × R that represent the hub and authority score for each document with respect to each
community, and the matrix C of size K×R represents the importance of each link type with respect
to each community. The matrices H, A, C have columns of length one; but, in contrast to the
solution provided by the SVD, these columns are not generally orthonormal [21]. The interpretation
of these quantities will be made clearer in §5.1. The PARAFAC decomposition approximates the
tensor X by the sum of R rank-1 outer products, as shown in Figure 2.
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= ...+ +

Figure 2. The PARAFAC decomposition separates the tensor into
rank-1 factors.

3.3 PARAFAC Algorithm

A common approach to solving the PARAFAC model is the use of alternating least squares (ALS)
[17, 13, 30]. At each inner iteration, we solve for one component matrix while holding the others
fixed. For example, suppose we wish to solve for the matrix C when H and A are fixed, i.e.,

min
C
‖X− JH,A,CK ‖ . (1)

In this case, we omit λ because it will just be absorbed into the lengths of the columns of C when
the computation is complete. Equation (1) can be rewritten as a matrix problem (see, e.g., [27])

min
C

∥∥X(3) −C (A�H)
∥∥ . (2)

Here X(3) is the mode-3 matritization or unfolding (see, e.g., []) of the tensor X, i.e.,(
X(3)

)
kl

= xijk where l = (i− 1)(N − 1) + j + 1.

The notation A�H is the Khatri-Rao product [27] and denotes the columnwise Kronecker product,
i.e.,

A�H =
[
a1 ⊗ h1 a2 ⊗ h2 · · · aR ⊗ hR

]
.

The pseudo-inverse of a Khatri-Rao product is given by

(A�H)† = (A�H)T(ATA ∗HTH)†,

so that only the pseudo-inverse on an R × R matrix needs to be calculated rather than that of an
N2 ×R matrix [27]. The optimal C is the least squares solution:

C = X(3) (A�H)† ,

which can be computed efficiently thanks to the properties of the Khatri-Rao product. The other
component matrices can be computed in an analogous fashion.

It is generally efficient to initialize the ALS algorithm with the leading R leading eigenvalues of
X(n)XT

(n) for the nth component matrix; see, e.g., [22]. In this case, however, X(3)XT
(3) is only of

size K ×K and K is generally much smaller than R, so we cannot use this scheme to initialize C.
Consequently, we can only use this scheme to initialize A and H. Therefore, we begin by solving
for C using the initialized values of A and H. The resulting algorithm is presented in Algorithm 1.

In the discussion that follows, we let Λ denote the R×R diagonal matrix whose diagonal is λ.

4 The Data

The data consists of ISI publication metadata from eleven SIAM journals as well as SIAM proceedings
(SIAM PROC S) for the period 1999–2004. There are 5022 articles; the number of articles per

8



Algorithm 1 Alternating Least Squares (ALS)
in: Tensor X of size N ×N ×K
in: Desired rank R > 0.
H← R principal eigenvalues of X(1)XT

(1)

A← R principal eigenvalues of X(2)XT
(2)

Initialize A to be . . .
repeat

C← X(3)(A�H)T
(
ATA ∗HTH

)†
Normalize columns of C to length 1
A← X(2)(C�H)T

(
CTC ∗HTH

)†
Normalize columns of A to length 1
H← X(1)(C�A)T

(
CTC ∗ATA

)†
Store column norms of H in λ and normalize columns of H to length 1

until the fit ceases to improve or the maximum number of iterations is exceeded.
out: λ ∈ RR, A,H ∈ RN×R and C ∈ RK×R such that X ≈ λ JH,A,CK.

publication is shown in Table 14. The names of the journals used throughout this paper are the ISI
abbreviations1 for the journals.

4.1 The Data as a Tensor

The data is represented as a N ×N ×K tensor where N is the number of documents and K is the
number of link types. In our case, N = 5022 and K = 5. The five link types are as follows; see also
Figure 1.

(1) The first slice (X::1) represents abstract similarity, i.e., xij1 is the cosine similarity of the
abstracts for documents i and j. The similarities were computed as follows. We used the Text to
Matrix Generator (TMG) [33] to generate a term-document matrix, T. Note that we removed all
words starting with a number and those words appearing on the default TMG stopword list. We
used term frequency and inverse document frequency local and global weightings (tf.idf); this means
that

tij = fij log2(N/Ni)

where fij is the frequency of term i in document j and Ni is the number of documents that term i
appears in. Each column of T is normalized to length one (for cosine scores), and then we set

X::1 = TTT.

Because they are cosine scores, all are in the range [0,1]. In order to sparsify the slice, only scores
greater than 0.2 (chosen heuristically to reduce the total number of nonzeros in all three text simi-
larity slices to approximately 250,000) are retained.

(2) The second slice (X::2) represents title similarity, i.e., xij2 is the cosine similarity of the titles
for documents i and j. It is computed in the same manner as the abstract similarity slice.

(3) The third slice (X::3) represents author-supplied keyword similarity, i.e., xij3 is the cosine
similarity of the keywords for documents i and j. It is computed in the same manner as the abstract
similarity slice.

(4) The fourth slice (X::4) represents author similarity, i.e., xij4 is the similarity of the authors

1http://www.isiknowledge.com/
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for documents i and j. It is computed as follows. Let W be the author-document matrix such that

wij =

{
1/

√
Mj if author i wrote document j

0 otherwise.

Here Mj is the number of authors for document j. Thus,

X::4 = WTW.

(5) The fifth slice (X::5) represents citation information, i.e.,

xij5 =

{
2 if document i cites document j

0 otherwise.

For this document collection, a weight of 2 was chosen heuristically so that the overall slice weight
(i.e., the sum of all the entries in X::k, see Table 2) would not be too small relative to the other
slices. The interpretation is that there are relatively few connections in this slice, but each indicates
a strong connection. In future work, we would like to consider less ad hoc ways of determining the
value for citation links.

These particular choices for link type and particular similarity measures are an example of what
can be done — many other choices are possible. For instance, non-symmetric similarity weights are
an option; e.g., if document A is a subset of document B, we could say that B is very similar to A
but A is not so similar to B because B talks about other topics as well. Moreover, we could use a
symmetric citation measure such as co-citation. We could include other connections such as whether
or not two articles are published in the same journal. We may also wish to consider data about
when an article is published, and so on.

4.2 Quantitative measurements on the data

Table 1 shows overall statistics on the dataset. The columns labeled Total and Max show the totals
over the dataset and the maximum values per article, respectively. Note that we only consider
citations within the dataset. Table 14 shows the total number of articles per journal. The most
citations to a single article is 15.

Table 1. Data statistics

Number of publications 12

Number of documents 5022

Total Max

Unique terms 16617 831

abstracts 15752 802

titles 5164 33

keywords 5248 40

Authors 6891 13

Citations 2659 12

Table 2 shows the number of nonzero entries and the sums of the entries for each slice. The
text similarity slices (k = 1, 2, 3) have large numbers of nonzeros but low average values, the author
similarity slice has few nonzeros but a higher average value, and the citation slice has the fewest
nonzeros but all values are 2.
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Table 2. Per slice data

Slice (k) Description Nonzeros
P

i

P
j xijk

1 Abstract Similarity 28476 7695.28

2 Title Similarity 120236 33285.79

3 Keyword Similarity 115412 16201.85

4 Author Similarity 16460 8027.46

5 Citation 2659 5318.00

5 Numerical Results

We compute the PARAFAC decomposition of X using different ranks (choices for R). The resulting
component matrices provide feature vectors in R-dimensional space for each document, which can
be used as described in the sections that follow.

5.1 Community Identification

The PARAFAC factors themselves reveal interesting connections in the data. The largest entries for
the vectors in each factor,

{hr,ar, cr}

can be interpreted as a sort of interlinked community. For the rth factor, high-scoring hubs point
to high-scoring authorities with the high-scoring link types in that factor.

Table 3. Link scores for two of the PARAFAC factors for R = 30.

r = 1

Score Link Type

0.95 TitleSim

0.28 KeywordSim

0.07 AbstractSim

0.06 Citation

0.06 AuthorSim

r = 10

Score Link Type

0.96 Citation

0.19 AuthorSim

0.16 TitleSim

0.10 KeywordSim

0.06 AbstractSim

For example, the first set (r = 1) of link scores is shown in Table 3, which is a sorted version of c1,
the first column of C. Title similarity has the highest score, as well as a strong keyword similarity.
In fact, the top three link types are based on text similarity and so are symmetric. Therefore, it is
no surprise that the hubs and authorities (the largest entries of h1 and a1 shown in Table 4) are the
same papers, just ordered slightly differently. This cluster of papers is clearly about conservation
laws.

On the other hand, the tenth factor (r = 10) has citation as the dominant link type; see Table 3.
Citation links are not symmetric, so the hubs and authorities are less similar; see Table 5. This
factor appears to be about preconditioning, though the titles do not all share keywords. Moreover,
the third authority is not directly about preconditioning but rather about graph partitioning, which
is often used in preconditioning, and thus highly cited.

The choice to have symmetric or non-symmetric connections affects the output and interpretation
of the PARAFAC model. In this case, we have mixed mostly symmetric connections with one
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Table 4. Highest scoring hubs & authorities for first PARAFAC factor
for R = 30.

Hubs

Score Title

0.18 On the boundary control of systems of conservation laws

0.17 On stability of conservation laws

0.16 Two a posteriori error estimates for one-dimensional scalar conservation laws

0.16 A free boundary problem for scalar conservation laws

0.15 Convergence of SPH method for scalar nonlinear conservation laws

0.15 Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws

0.15 High-order central schemes for hyperbolic systems of conservation laws

0.15 Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws

Authorities

Score Title

0.18 On the boundary control of systems of conservation laws

0.18 On stability of conservation laws

0.16 Two a posteriori error estimates for one-dimensional scalar conservation laws

0.16 A free boundary problem for scalar conservation laws

0.16 Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws

0.16 Convergence of SPH method for scalar nonlinear conservation laws

0.15 Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws

0.14 High-order central schemes for hyperbolic systems of conservation laws

asymmetric connection. In cases where all or most of the factors are symmetric, one option is to
constrain the first two factors to be identical, and this is a topic for future research.

The benefit of the multi-link analysis is that each different factor potentially has a different set
of important link types, which helps in understanding more complex connections than might be
identified with a single analysis, e.g., just citation analysis or just text similarity.

5.2 Latent Document Similarity

The authority and hub matrices provide latent representations of each document in terms of the
principal factors in the PARAFAC analysis. This, in turn, yields a latent document similarity score
that provides information beyond direct text, author, or citation analysis. The N × N similarity
matrix is computed as

S =
1
2
HHT +

1
2
AAT.

The similarity for documents i and j is given by sij . We could alternatively use just the hub matrix
H or just the authority matrix A or some other combination of the two matrices. Emphasizing the
H matrix chooses papers that cite the same papers, whereas emphasizing A chooses papers that are
cited by the same papers. Moreover, we could incorporate Λ, e.g.,

S =
1
2
HΛHT +

1
2
AΛAT.

For now, we relegate these issues to future study.

These sorts of issues are reminiscent of the choices facing users of latent semantic indexing (LSI)
[12] which uses the SVD of a term-document matrix, producing term and document matrices. There
is a choice of how to use the diagonal scaling for the queries and comparisons [6].
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Table 5. Highest hubs & authorities for the tenth PARAFAC factor
for R = 30.

Hubs

Score Title

0.36 Multiresolution approximate inverse preconditioners

0.20 Preconditioning highly indefinite and nonsymmetric matrices

0.16 A factored approximate inverse preconditioner with pivoting

0.16 On two variants of an algebraic wavelet preconditioner

0.14 A robust and efficient ILU that incorporates the growth of the inverse triangular factors

0.11 An algebraic multilevel multigraph algorithm

0.11 On algorithms for permuting large entries to the diagonal of a sparse matrix

0.11 Preconditioning sparse nonsymmetric linear systems with the Sherman-Morrison formula

Authorities

Score Title

0.27 Ordering anisotropy and factored sparse approximate inverses

0.25 Robust approximate inverse preconditioning for the conjugate gradient method

0.23 A fast and high-quality multilevel scheme for partitioning irregular graphs

0.20 Orderings for factorized sparse approximate inverse preconditioners

0.19 The design and use of algorithms for permuting large entries to the diagonal of sparse matrices

0.17 BILUM Block versions of multielimination and multilevel ILU preconditioner for general sparse linear
systems

0.16 Orderings for incomplete factorization preconditioning of nonsymmetric problems

0.15 Preconditioning highly indefinite and nonsymmetric matrices

We consider the example of computing the similarity to the paper Link analysis: Hubs and
authorities on the World Wide Web. The results depend on the choice of R, i.e., the number of
factors used in the PARAFAC decomposition. Table 6 shows the result for R = 10 and Table 7 for
R = 30. The R = 10 case is not very precise, citing a variety of papers as related, ranging from
the topic of sparse approximate inverses (arguably distantly related) to interior point methods (not
related) and graph partitioning (related). Moreover, note that the similarity scores are very low.
The results for R = 30 appears to be much improved because the focus is on papers about graphs;
unfortunately, this dataset does not contain many papers about web analysis.

Just as in LSI, choosing the rank of the approximation (R) is heuristic.

Table 6. Article similarities to Link Analysis: Hubs and Authorities
on the World Wide Web using a rank R = 10 PARAFAC decomposition.

Score Title

0.000079 Ordering anisotropy and factored sparse approximate inverses

0.000079 Robust approximate inverse preconditioning for the conjugate gradient method

0.000077 An interior point algorithm for large-scale nonlinear programming

0.000073 Primal-dual interior-point methods for semidefinite programming in finite precision

0.000068 Some new search directions for primal-dual interior point methods in semidefinite programming

0.000068 A fast and high-quality multilevel scheme for partitioning irregular graphs

0.000067 Reoptimization with the primal-dual interior point method

0.000065 Superlinear convergence of primal-dual interior point algorithms for nonlinear programming

0.000064 A robust primal-dual interior-point algorithm for nonlinear programs

0.000063 Orderings for factorized sparse approximate inverse preconditioners
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Table 7. Article similarities to Link Analysis: Hubs and Authorities
on the World Wide Web using a rank R = 30 PARAFAC decomposition.

Score Title

0.000563 Skip graphs

0.000356 Random lifts of graphs

0.000354 A fast and high-quality multilevel scheme for partitioning irregular graphs

0.000322 The minimum all-ones problem for trees

0.000306 Rankings of directed graphs

0.000295 Squarish k-d trees

0.000284 Finding the k-shortest paths

0.000276 On floor-plan of plane graphs

0.000275 1-Hyperbolic graphs

0.000269 Median graphs and triangle-free graphs

5.3 Analyzing a Body of Work via Centroids

Finding documents similar to a body of work may be useful in a literature search or in finding other
authors working in a given area. We performed two sets of experiments using centroids to analyze
a body of work.

In the first set of experiments, we focused on finding collections of articles containing a particular
term (or phrase). We found all articles containing the term in either the title, abstract, or keywords.
We computed the centroid ch using the columns of the hub matrix H for the identified articles,
and the centroid ca using the columns of the authority matrix A for the identified articles. The
similarity scores for all documents to the body of work are then computed as

s =
1
2
Hch +

1
2
Aca.

Consequently, si is the similarity of the ith document to the centroid.

Table 8 shows the results of a search on the term “GMRES”, which is a method of solving linear
systems. In the table, we list the top scoring documents using the hub and authority matrices
separately to illustrate the potential advantage of the combined score above. We do not want to
overemphasize the papers that cite many of the papers about GMRES (as in the hubs here) or those
which are most cited (as in the authorities here). Rather, a combination of the two, which takes
into account the content of the papers (i.e., abstracts, titles, and keywords) to a greater extent than
either of these two extremes. Thus, the average scores as computed above result in a more balanced
look at papers about GMRES (each article denoted with an asterisk in Table 8 is one of the top ten
scoring using the combined scores).

Table 9 shows the results of a search on the articles written by V. Kumar. We found all of
the documents written by the author, generating the centroid and similarity score vector as above.
In these 10 articles, only three papers (including the two authored by V. Kumar) are explicitly
linked to V. Kumar by co-authorship or citations. Furthermore, we see several papers that are
closely related to those written by V. Kumar focused on graph analysis and some that are not
so obviously linked. We list the authors in Table 9 as well to illustrate that such results could be
used as a starting point for finding authors related to V. Kumar that are not necessarily linked by
co-authorship or citation. In this case, the author W. P. Tang appears to linked to V. Kumar.

Centroids can be a useful tool in understanding small collections of documents. As we discuss
in §5.5, centroids for larger sets of documents did not prove to be as useful. Centroid-matching is
potentially a useful tool in matching referees to papers. For example, program committee chairs
would create a centroid for each participant on a program committee. Work assignments can be
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Table 8. Articles similar to the centroid of articles containing the term
GMRES using the hub and authority matrices to compute similarity
scores.

Hubs

Score

Hch Aca Title

0.0240 0.0019 ∗Flexible inner-outer Krylov subspace methods

0.0185 0.0082 ∗FQMR A flexible quasi-minimal residual method with inexact preconditioning

0.0169 0.0017 ∗Theory of inexact Krylov subspace methods and applications to scientific computing

0.0132 0.0024 ∗GMRES with deflated restarting

0.0127 0.0003 ∗A case for a biorthogonal Jacobi-Davidson method Restarting and correction equation

0.0107 0.0010 A class of spectral two-level preconditioners

0.0076 0.0011 An augmented conjugate gradient method for solving consecutive symmetric positive definite
linear systems

Authorities

Score

Aca Hch Title

0.0217 0.0011 ∗Adaptively preconditioned GMRES algorithms

0.0158 0.0014 ∗Inexact preconditioned conjugate gradient method with inner-outer iteration

0.0149 0.0074 ∗Truncation strategies for optimal Krylov subspace methods

0.0113 0.0056 ∗Flexible conjugate gradients

0.0082 0.0185 ∗FQMR A flexible quasi-minimal residual method with inexact preconditioning

0.0080 0.0007 Linear algebra methods in a mixed approximation of magnetostatic problems

0.0063 0.0060 ∗On the convergence of restarted Krylov subspace methods
∗ In top 10 scores of s = 1

2
Hch + 1

2
Aca.

expedited by automatically matching articles to the appropriate experts on the committee.

As a segue to the next section, we note that finding a set of documents associated with a particular
author is not always straightforward. In fact, in the example above, there is also an author named
V. S. A. Kumar, and it is not clear from article titles alone that this is not the same author
as V. Kumar. In the next section, we discuss the use of the feature vectors produced by tensor
decompositions for author disambiguation.

5.4 Author Disambiguation

A challenging problem in working with publication data is determining whether two authors are
in fact a single author using multiple aliases. Such problems are often caused by incomplete or
incorrect data or varying naming conventions for authors used by different publications (e.g., James
R. Smith versus J. Smith). In the SIAM articles, there are many instances where two or more
authors share the same last name and at least the same first initial, e.g., V. Torczon and V. J.
Torczon. In these cases, we are interested in determining which authors were listed in the data
under multiple aliases.

For each group of authors sharing the same last name and same first initial, we computed
centroids of the columns of the authority matrix, A, of the rank R = 30 PARAFAC decomposition,
corresponding to the articles written by each author. We then computed pairwise inner products of
these centroids to determine which centroids were similar. (Note that the scores are values in [0,1].)
The higher the similarity score, the most confident we were that two author names referred to a
single person.

15

http://dx.doi.org/10.1137/S0036142902401074
http://dx.doi.org/10.1137/S106482750037336X
http://dx.doi.org/10.1137/S1064827502406415
http://dx.doi.org/10.1137/S1064827599364659
http://dx.doi.org/10.1137/S0895479800373371
http://dx.doi.org/10.1137/S1064827502408591
http://dx.doi.org/10.1137/S0895479897330194
http://dx.doi.org/10.1137/S0895479897330194
http://dx.doi.org/10.1137/S1064827596305258
http://dx.doi.org/10.1137/S1064827597323415
http://dx.doi.org/10.1137/S0036142997315950
http://dx.doi.org/10.1137/S1064827599362314
http://dx.doi.org/10.1137/S106482750037336X
http://dx.doi.org/10.1137/S1064827598333211
http://dx.doi.org/10.1137/S0895479898348507


Table 9. Papers similar to those by V. Kumar.

Score Authors Title

0.0645 Karypis G,
Kumar V

A Fast and high-quality multilevel scheme for partitioning irregular graphs

0.0192 Bank RE,
Smith RK

The incomplete factorization multigraph algorithm

0.0149 Tang WP,
Wan WL

Sparse approximate inverse smoother for multigrid

0.0115 Chan TF,
Smith B,
Wan WL

An energy-minimizing interpolation for robust multigrid methods

0.0114 Henson VE,
Vassilevski PS

Element-free AMGe General algorithms for computing interpolation weights in AMG

0.0108 Hendrickson B,
Rothberg E

Improving the Run-time and Quality of Nested Dissection Ordering

0.0092 Karypis G,
Kumar V

Parallel multilevel k-way partitioning scheme for irregular graphs

0.0091 Tang WP Toward an effective sparse approximate inverse preconditioner

0.0085 Saad Y,
Zhang J

BILUM Block versions of multielimination and multilevel ILU preconditioner for
general sparse linear systems

0.0080 Bridson B,
Tang WP

A structural diagnosis of some IC orderings

In the example above, the inner product of the centroids for V. Torczon and V. J. Torczon is
0.98, and thus we would have high confidence that these author names alias a single person (verified
by manual inspection of the articles).

As an example use of author disambiguation, we did the following experiment. (1) We selected
the top 20 authors of papers in the dataset, i.e., those with the most papers. (2) For each author
in the top 20, we selected all papers with any author sharing the same first initial and last name.
(3) Next, for each author, we computed the centroid for each set of first initials. (4) We calculated
the similarity scores for the centroids. (5) Finally, we manually checked to see which matches were
correct.

Table 10 shows the results. We show just the top ten authors before and after disambiguation.
The lowest “true match” disambiguation score was 0.4399, and this correctly adjusted the article
counts for four authors: T. F. Chan, T. A. Manteuffel, S. F. McCormick and G. H. Golub.
All matches above this threshold were true matches; in contrast, the next highest disambiguation
score was 0.0964. For three of the above four authors, it was just a matter of connecting authors
whose second initial was omitted. However, disambiguating T. F. Chan was less straightforward,
as T. Chan and T. M. Chan are also authors in the data. However, the disambiguation scores
correctly identify T. Chan as T. F. Chan: T. Chan—T. F. Chan = 0.7935, T. Chan—T. M.
Chan = 0.001, and T. F. Chan—T. M. Chan = 0.001. Such differentiation may be helpful when
searching for a particular author’s entire body of work.

In our initial disambiguation scoring, we aimed at matching centroids to determine author alias-
ing. However, some of the authors with single initials were not the same author (this can happen
with two initials as well, but is less likely). This leads to a further challenge of disambiguating au-
thors. To resolve this problem, we computed disambiguation scores using centroids for authors with
two or more initials and individual documents for authors with only a single initial. An example of
where this helped correctly determine multiple aliases is Z. Wu. Table 11 lists the papers by these
authors. We consider two cases: treating Z. Wu as a single author and taking the centroid of the
two papers or treating each paper as separate. In Table 12, Z. Wu, as the author of two papers,
appears most similar to author 3. When we separate the articles of Z. Wu and recompute the
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Table 10. Authors with most papers before and after disambiguation
(threshhold = 0.499)

Before Disambuguation After Disambuguation

Papers Author Papers Author

17 Du Q 17 Du Q

15 Kunisch K 16 Chan TF

15 Zwick U 16 Manteuffel TA

14 Chan TF 16 McCormick SF

13 Klar A 15 Kunisch K

13 Manteuffel TA 15 Zwick U

13 McCormick SF 13 Klar A

13 Motwani R 13 Golub GH

12 Golub GH 13 Motwani R

12 Kao MY 12 Kao MY

Table 11. Disambiguation of author Z. Wu.

ID Author Title(s)

1a Wu Z
(Zhen)

Fully coupled forward-backward stochastic differential equations and applications to optimal
control

1b Wu Z
(Zili)

Sufficient conditions for error bounds

2 Wu ZJ
(Zhijun)

A fast newton algorithm for entropy maximization in phase determination

3 Wu ZL
(Zili)

First-order and second-order conditions for error bounds

3 Wu ZL
(Zili)

Weak sharp solutions of variational inequalities in Hilbert spaces

4 Wu ZN
(Zi-Niu)

Steady and unsteady shock waves on overlapping grids

4 Wu ZN
(Zi-Niu)

Efficient parallel algorithms for parabolic problems

scores, there is much stronger evidence that authors 1b and 3 are the same author and that author
1a is most likely not an alias for one of the other authors; see Table 13.

Manual inspection of all the articles by this group of authors indicates that authors 1b and 3
are in fact the same person, Zili Wu, and that author 1a is not an alias of any other author in this
group. The verified full name of each author is listed in parentheses in Table 11.

5.5 Journal Prediction via Ensembles of Trees

As another analysis approach, we investigated supervised machine learning with the PARAFAC
decomposition data as a means of predicting which journal published which paper. Using centroids
to represent each journal, as was done for topics or authors in §5.3, did not yield good results because
the centroids were not sufficiently distinct.

Instead, we used decision trees and ensembles. Our feature vectors were based on the authority
matrix A from a PARAFAC decomposition with R = 30. Consequently, each document was rep-
resented by a length-30 feature vector, and the name of the journal which published it as the label
value. We split the 5022 labeled feature vectors into 10 disjoint partitions, stratified so that the
relative proportion of each journal’s papers remained constant across the partitions. Using OpenDT
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Table 12. Combined author 1 in disambiguation of Z. Wu.

1 2 3 4

1 1.00 0.18 0.79 0.03
2 0.18 1.00 0.06 0.06
3 0.79 0.06 1.00 0.01
4 0.03 0.06 0.01 1.00

Table 13. Separated author 1 for disambiguation of Z. Wu.

1a 1b 2 3 4

1a 1.00 0.01 0.21 0.03 0.07
1b 0.01 1.00 0.09 0.90 0.00
2 0.21 0.09 1.00 0.06 0.06
3 0.03 0.90 0.06 1.00 0.01
4 0.07 0.00 0.06 0.01 1.00

[3], we performed a 10-fold cross validation of bagged ensembles [11] of C4.5 decision trees. We used
an ensemble size of 100; larger ensembles did not improve performance.

Table 14. Journal prediction confusion matrix

Predicted Journal

1 2 3 4 5 6 7 8 9 10 11 12 Total

1 SIAM J APPL DYN SYST 0 14 4 1 1 4 0 3 1 1 2 1 32

2 SIAM J APPL MATH 1 318 19 46 3 54 13 31 7 41 12 3 548

3 SIAM J COMPUT 0 29 303 24 29 5 15 8 7 10 109 1 540

4 SIAM J CONTROL OPTIM 0 57 21 346 2 34 20 12 51 22 11 1 577

5 SIAM J DISCRETE MATH 0 12 122 9 40 4 15 2 1 2 53 0 260

6 SIAM J MATH ANAL 0 120 19 56 1 108 15 58 3 34 5 1 420

7 SIAM J MATRIX ANAL A 0 23 11 22 5 8 235 18 18 81 2 0 423

8 SIAM J NUMER ANAL 0 56 13 47 0 37 37 304 13 98 5 1 611

9 SIAM J OPTIMIZ 0 10 19 55 1 4 10 5 228 1 10 1 344

10 SIAM J SCI COMPUT 0 77 7 32 0 36 98 135 23 237 7 4 656

11 SIAM PROC S 0 37 176 21 34 12 9 8 7 13 149 3 469

12 SIAM REV 1 48 13 12 2 13 16 6 6 10 8 7 142

The average accuracy across the folds was 45.3%. The overall confusion matrix (obtained by
element-wise summing of the per-fold confusion matrices) is in Table 14. A few caveats are in order
before discussion of the results. The journal “SIAM PROC S” (#11) is not actually a journal but
rather conference proceedings about a variety of topics. Similarly, the journal “SIAM REV” (#12)
contains articles on many different topics. Thus, it is no surprise that the many of the incorrect
predictions involve these two publications. It is also important to note that both “SIAM J APPL
DYN SYST” (#1) and “SIAM REV” (#12) have very few articles overall. Of the remaining journals,
the majority of articles are correctly assigned. Moreover, the journals that seem to often be confused
are those that are, in fact, quite similar, such as “SIAM J APPL MATH” (#2) and “SIAM J MATH
ANAL” (#6). Moreover, note that “SIAM J SCI COMPUT” (#10) is confused more than the
others, which seems reasonable since it is a more diffuse journal than some of the others.
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6 Conclusions & Future Work

We represent multiple similarities between documents in a collection as an N ×N ×K tensor and
decompose the tensor using PARAFAC. How to best choose the weights of the entries of the tensor
is an open topic of research—ours were chosen heuristically.

Different factors from the PARAFAC decomposition are shown to emphasize different link types;
see §5.1. Moreover, the highest scoring hubs and authorities in each factor are an interrelated
community. The component hub and authority matrices (H and A) of the PARAFAC decomposition
can be used to derive feature vectors for latent similarity scores. However, the rank (R) of the
PARAFAC decomposition strongly influenced the quality of the matches; see §5.2. The choice of
rank (R) and exactly how to use the component matrices are open questions, including how to
combine the hub and authority matrices, how to weight or normalize the features, and whether or
not to incorporate the factor weightings, i.e., λ.

This brings us to two disadvantages of the PARAFAC model. First, the factor matrices are not
orthogonal, in contrast to the matrix SVD. A possible remedy for this is to instead consider the
TUCKER decomposition [31], which produces orthogonal component matrices and, moreover, can
have a different rank for each component. Second, the decomposition of rank R is not the same as
the first R factors of the decomposition of rank S > R, again in contrast to the SVD [21]. This
means that we cannot just overestimate and determine the optimal R by trial-and-error without
great expense.

We used the centroids of hub and of authority feature vectors to represent a small body of work
(e.g., all the papers with the phrase “GMRES”) in order to find related works. As expected, the
hub and authority feature vectors produce noticeably different answers, either one of which may be
more or less useful in different contexts; see §5.3.

An application of the similarity analysis is in author disambiguation, where we compare centroids
to predict which authors with similar names are actually the same. The technique is applied to the
subset of authors with the most papers authored in the entire dataset and affects the counts for the
most published authors; see §5.4. In future work, we will consider the appropriate choice of the rank
(R) for disambiguation, how to choose the disambiguation similarity threshold, and do a comparison
to other approaches.

Using the derived authority vectors, we predict which journal each article was published in; see
§5.5. Though the accuracy was relatively low, closer inspection of the data yielded clues as to why.
For example, two of the publications were not focused publications. Overall, the results revealed
similarities between the different journals.

We also plan to revisit the representation of the data on two fronts. First, we wish to add
authors as nodes. Hendrickson [18] observes that term-by-document matrices can be expanded
to be (term plus document)-by-(term plus document) matrices so that term-term and document-
document connections can be additionally encoded. Therefore, we intend to use a (document plus
author) dimension so that we can explicitly capture connections between documents and authors
as well as the implicit connections between authors, e.g., colleagues, conference co-organizers, etc.
Second, in order to make predictions or analyze trends over time, we intend to incorporate transient
information using an additional dimension for time.
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